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ABSTRACT

This technical report presents our submission for the ICME
2024 Grand Challenge titled “Semi-supervised Acoustic
Scene Classification under Domain Shift”. Acoustic Scene
Classification (ASC) plays a crucial role in audio signal pro-
cessing, with applications ranging from urban soundscapes
to smart homes. However, challenges like domain shift and
scarce labeled data hinder its development, highlighting the
need for semi-supervised learning strategies. Our submission
outlines a semi-supervised ASC system that employs pre-
training on available datasets, followed by finetuning through
FixMatch and pseudo-labeling, and concludes with test-time
adaptation. This approach seeks to effectively utilize unla-
beled data and mitigate domain shift, ultimately enhancing
the ASC system’s performance.

Index Terms— acoustic scene classification, semi-

supervised learning, domain shift

1. INTRODUCTION

Acoustic Scene Classification (ASC) is a pivotal task in the
realm of audio signal processing, aiming to categorize au-
dio recordings into predefined scenes based on their acoustic
characteristics. This technology underpins numerous applica-
tions, from enhancing urban soundscapes to advancing smart
home devices, making its development a focal point for re-
searchers and technologists alike.

However, as ASC research advances, it confronts signifi-
cant obstacles. Challenges such as domain shift significantly
influence ASC, where discrepancies in acoustic properties be-
tween training and testing scenarios can degrade model per-
formance. Additionally, the scarcity of labeled data presents
a hurdle for supervised learning methods, pushing the need
for semi-supervised techniques that tap into the wealth of un-
labeled audio data.

These challenges also form the core of the ‘“Semi-
supervised Acoustic Scene Classification under Domain
Shift” challenge [1]. Within this context, the challenge pro-
vides a development dataset from the CAS 2023 collection,
featuring 4.8 hours of labeled and 19.3 hours of unlabeled

data. Besides, a notable domain shift exists in the evaluation
dataset, including recordings from cities not covered in the
development data.
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Fig. 1. The pipeline of our system

To navigate these obstacles, we propose a semi-
supervised ASC system. Figure | illustrates our method,
which unfolds in four steps. Initially, we pretrain the model
using a variety of available datasets. Next, we finetune it
on the challenge development dataset employing the Fix-
Match [2] strategy. As the model acquires knowledge and
becomes accustomed to the development set, we generate
pseudo labels for the remaining unlabeled data and further
finetune the model using these labels. Lastly, in the testing
phase, since the evaluation set cannot be used for training, we
opt for a test-time adaptation [3] method to mitigate the do-
main shift between the development and evaluation sets. In
the following sections, we will delve into the details of each
step.



2. DATA PREPROCESSING AND AUGMENTATION

2.1. Datasets

In compliance with the challenge rules, apart from the ASC
challenge development dataset [ 1], we utilize the TAU Urban
Acoustic Scenes (UAS) 2020 Mobile development dataset [4]
and the CochlScene dataset [5] for model pretraining. These
are the only two additional datasets permitted for use in this
challenge.

TAU UAS. The TAU Urban Acoustic Scenes 2020 Mobile
dataset [4] features 64 hours of recordings from various Eu-
ropean cities across ten acoustic scenes, captured simultane-
ously using four devices (A, B, C, and D). Additionally, it
includes synthetic recordings from devices S1-S11, created
by simulating audio from device A, a high-quality binaural
recorder, to enhance the dataset’s diversity.

CochlScene. The Cochl Acoustic Scene Dataset [5], also
known as CochlScene, is an acoustic scene dataset with
recordings entirely sourced from crowdsourcing participants
in Korea. By selecting a subset pertinent to Acoustic Scene
Classification (ASC) from the full collection, it has 76,115
ten-second audio files across 13 different acoustic scenes,
contributed by 831 participants.

2.2. Feature extraction

In our data preprocessing pipeline, we standardize audio files
to a sample rate of 44,100 Hz. The process involves gener-
ating spectrograms using a Hann window of 1024 with a 320
hop size and an FFT window of 2048. These spectrograms are
then converted into log-Mel spectrograms with 64 Mel bins,
ranging from 10 Hz to half the sample rate.

2.3. Data augmentation

For model training, we primarily employ three data augmen-
tation techniques: SpecAugment [6], Mixup [7] and Freq-
MixStyle [8, 9].

SpecAugment. SpecAugment [6] was initially crafted for
speech data improvement, and can also enhances audio by ap-
plying frequency and time masking to log mel spectrograms.
It randomly hides frequency bins and time segments, thereby
increasing model robustness to frequency and temporal varia-
tions. This dual-masking approach effectively guards against
audio distortions.

Mixup. Mixup [7] creates new dataset entries by blending
the inputs and targets of two audio clips. Given two audio
inputs x; and xo with their corresponding targets y; and yo,
the augmented input x and the target y are formed as x =
Az + (1 — N and y = Ay1 + (1 — A)ya, with \ being
drawn from a Beta distribution. Typically, this technique is
applied to the log mel spectrogram of the audio clips from
one batch.

Freq-MixStyle. Freq-MixStyle (FMS) [8, 9] is an adapta-
tion of the original MixStyle [10] concept but tailored for
frequency. It first normalizes the frequency bands within a
spectrogram, then reintroduces variability by denormalizing
them using the combined frequency statistics from two differ-
ent spectrograms. The application of FMS to any given batch
occurs with a probability determined by the hyperparameter
Pryms, With mixing coefficients drawn from a Beta distribu-
tion shaped by a.

3. PRETRAINING ASC MODEL

3.1. Network architecture

Our ASC model employs the CNN10 configuration from
PANNSs [11], adapted for the audio tagging task. This ar-
chitecture consists of 10 layers, including 4 convolutional
blocks. Each block contains 2 convolutional layers with 3x3
kernels. Batch normalization is incorporated between con-
volutional layers to enhance training efficiency and stability,
along with the ReL.U activation function. For downsampling,
average pooling with a 2x2 kernel size is applied within each
convolutional block. The model consists of 6.037M parame-
ters in total.

3.2. Training strategy

To train the ASC model, we use data from the challenge de-
velopment set, TAU, and CochlScene. These datasets vary in
both classes and quantities, requiring us to reorganize them.
We combine identical classes from each dataset and introduce
new ones, resulting in a total of 20 classes. To ensure each
dataset contributes equally, we apply weighted sampling for
data from the three datasets.

However, the number of audio clips still varies among dif-
ferent scene classes. To address this, we adopt a strategy that
samples audio clips from all sound classes equally for each
minibatch.

For additional robustness, our training includes data aug-
mentations like SpecAugment, Mixup, and Freq-MixStyle,
improving the model’s performance across various acoustic
scenes. The model is trained using binary cross entropy loss
and optimized by Adam optimizer.

4. TWO-STAGE FINETUNING

After pretraining, we finetune the model on the challenge de-
velopment dataset in two stages. In the first stage, we use
FixMatch, a semi-supervised algorithm, to finetune the model
with both labeled and unlabeled data. In the second stage, we
generate pseudo labels for all unlabeled data using the stage
1 model. Then, we finetune the model further using either
labeled data or data with these pseudo labels.



4.1. Stage 1: FixMatch
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Fig. 2. Diagram of FixMatch

Figure 2 illustrates that during each training step of Fix-
Match [2], every batch contains a mix of labeled and unla-
beled data, leading to the calculation of two types of cross-
entropy loss: supervised L and unsupervised L,,. The super-
vised loss L calculates the standard cross-entropy on weakly
augmented labeled data. For the unsupervised loss L,, we
first determine the model’s predicted class from the weakly-
augmented unlabeled data. After selecting a confidence
threshold, we use the chosen predictions as pseudo labels to
calculate the cross-entropy loss for the strongly-augmented
unlabeled data. In our system, SpecAugment serves as the
weak augmentation. For strong augmentation, we enhance
SpecAugment with an additional technique, Freq-MixStyle.

4.2. Stage 2: Pseudo Labeling

Following stage 1 training, we posit that the model can ac-
curately predict labels for unlabeled data. Hence, we use the
stage 1 model to create pseudo labels for the remaining un-
labeled training data and then proceed to finetune the model
with this newly labeled data. During this stage, we employ
the same strong augmentation used in stage 1 for all data.

5. TEST-TIME ADAPTATION

A test-time adaptation method [3] based on k-nearest neigh-
bor (KNN) is adopted to bridge the gap between the develop-
ment and the evaluation sets. The embeddings of all labeled
samples of the development set are pre-extracted to form a
memory bank for KNN. During inference, the embedding of
each query sample is compared with the memory bank via
cosine similarity, and the distances to top-k neighbors are uti-
lized as the scoring coefficient. Specifically, let M, denote
the set of embeddings of all labeled samples in the develop-
ment set. For each query embedding x;, we search M, for a
subset of top-k neighbors N, (z;) by means of cosine sim-
ilarity:
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Then the final prediction of the model can be given by:
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where y; is the label of z;, and 1{y;} denote the one-hot
vector of x;. It is noted that the adopted method neither fine-
tunes the model on the evaluation set, nor utilizes the statistics
of the evaluation set, which is in compliance with the chal-
lenge rules.

6. CONCLUSION

In this technical report, we describe our submission to ICME
2024 Grand Challenge “Semi-supervised Acoustic Scene
Classification under Domain Shift”. To overcome the do-
main shift and label scarcity challeges, we develop a semi-
supervised ASC system. Our methodology involved pretrain-
ing on various datasets, finetuning with FixMatch, generating
pseudo labels for further refinement, and employing test-time
adaptation to alleviate the domain shift for evaluation.
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